NASA’s New Solar Sail Could Soon Navigate in Space

Scientists say the flashy tech could help them study the sun’s polar regions

An artist representation of how a diffractive solar sail may look in space. The sail looks like a rainbow kite.
Like a regular sail uses wind to navigate across an ocean, solar sails use the pressure exerted by sunlight to move through space. (Pictured: a conceptual illustration of a diffractive solar sail) MacKenzi Martin

A project to develop an innovative solar sail has advanced to the final leg of a NASA research program. Phase three of the Innovative Advanced Concepts program (NIAC) will allow researchers to continue exploring and developing a diffractive solar sail for two years with a funding award of $2 million, reports George Dvorsky for Gizmodo. This award could push the solar sail concept, a long-simmering field of research for space exploration only used a handful of times, towards far wider use.

"As we venture farther out into the cosmos than ever before, we'll need innovative, cutting-edge technologies to drive our missions," NASA administrator Bill Nelson says in a statement. "The NASA Innovative Advanced Concepts program helps to unlock visionary ideas—like novel solar sails—and bring them closer to reality."

In a similar way that a regular sail on a boat uses wind to create motion, solar sails work by using the pressure exerted by sunlight to move through space. When photons of light bounce off the mirror-like surface, their momentum pushes the sail forward in a manner that allows a craft not to use any fuel. Current refractive solar sail designs are large, thin and often limited in what directions they can travel. However, a diffractive solar sail, which uses small grates embedded into thin films, could be smaller, more versatile and steerable, closer in maneuverability to a fuel-powered ship. 

The concept of a diffractive solar sail was first selected for NIAC Phase 1 and Phase 2 status in 2019. During those phases and their trials, a team tested several sail materials and developed navigation and control schemes for a potential diffractive lightsail mission to orbit the Sun’s poles, a statement explains. Both phases also had space weathering experiments that tested the sail’s ability to survive the harsh ultraviolet exposure of space, according to a NASA statement from 2019. During phase 3, researchers will optimize the sail material and perform ground tests to prepare for the conceptual solar mission.

Solar sails have a relatively short and checkered history. The nonprofit research organization The Planetary Society attempted to launch the Cosmos 1 probe in 2005 to orbit around Earth, but it didn’t even leave the planet due to a rocket failure. The government of India launched small solar sail-powered missions as accessories on communication satellites in 1992 and 2003. The Japanese Exploration Space Agency (JAXA) successfully launched the IKAROS spacecraft, deployed with a solar sail, in 2010, to study Venus and the Sun. Since then, NASA and the Planetary Society have both launched successful solar sail-powered crafts into low-earth orbit. 

“Diffractive solar sailing is a modern take on the decades old vision of lightsails,” says Amber Dubill, a mechanical engineer at Johns Hopkins University who will lead the third phase, in a NASA statement. “While this technology can improve a multitude of mission architectures, it is poised to highly impact the heliophysics community’s need for unique solar observation capabilities.”

Get the latest stories in your inbox every weekday.

Email Powered by Salesforce Marketing Cloud (Privacy Notice / Terms & Conditions)